Skip to main content

MTH108 CMA01 Answers

 


CMA01

  • Due 5 Oct at 23:55
  •  
  • Points 100
  •  
  • Questions 20
  •  
  • Available 28 Sep at 0:00 - 5 Oct at 23:55 8 days
  •  
  • Time limit None

Instructions

This Computer-Marked Assignment (CMA) covers topics from the first 3 lectures of this MTH108 course, with a heavy emphasis on techniques of integration.

There are 20 MCQ questions, each worth 5 marks.

Attempt history

AttemptTimeScore
LATESTAttempt 1158 minutes95 out of 100
 Correct answers are hidden.
Score for this quiz: 95 out of 100
Submitted 30 Sep at 21:29
This attempt took 158 minutes.
 
Question 1
/ 5 pts

Let  LaTeX: f\left(x\right)=\ln\left(1+x^2\right)f ( x ) = ln  ( 1 + x 2 ) for  LaTeX: x\le0x  0 .

Determine the rule for LaTeX: f^{-1}\left(x\right)f  1 ( x ) .

  

Well done

  
  
  
 
Question 2
/ 5 pts

Let LaTeX: F\left(x\right)=\arcsin\sqrt{x}F ( x ) = arcsin  x for LaTeX: 0<x<10 < x < 1. Compute LaTeX: F'\left(x\right)F  ( x ) for LaTeX: 0<x<10 < x < 1.

  
  
Well done
  
  
 
Question 3
/ 5 pts

Compute the indefinite integral 

LaTeX: \int\left(-\frac{6}{x^2}-\frac{5}{\cos^2x}\right)dx (  6 x 2  5 cos 2  x ) d x

  
  
Well done
  
  
 
Question 4
/ 5 pts

Compute the indefinite integral LaTeX: \int\left(\frac{x-1}{x^2+1}\right)dx ( x  1 x 2 + 1 ) d x

  
Well done
  
  
  
 
Question 5
/ 5 pts
Compute the indefinite integral LaTeX: \int\sin^3xdx sin 3  x d x
  
  
  
Well done
  
 
Question 6
/ 5 pts

In the computation of the indefinite integral

LaTeX: \int\left(\ln x\right)^2\:dx ( ln  x ) 2 d x

which of the following techniques is used?

  
  
  
  

Well done

 
Question 7
/ 5 pts

In the computation of the indefinite integral

LaTeX: \int\frac{2x^3-3x^2+4x}{x^2-2x+2}dx 2 x 3  3 x 2 + 4 x x 2  2 x + 2 d x

which of the following techniques is used?

  
  

Well done.

After Long Division is done, how would you proceed to get the final answer?

  
  
 
Question 8
/ 5 pts

In the solution of the integral   

LaTeX: \int\frac{x}{\sqrt{1-x^4}}\:dx x 1  x 4 d x   

which of the following substitutions is used?

  
  
  
  

Well done!

 
Question 9
/ 5 pts

In the computation of the indefinite integral

LaTeX: \int\sin^2\left(3x\right)dx sin 2  ( 3 x ) d x

which of the following trigonometric identities is used?

  
  
  

Well done.

In particular, we use this identity to achieve

LaTeX: \sin^2\left(3x\right)=\frac{1-\cos6x}{2}sin 2  ( 3 x ) = 1  cos  6 x 2sin 2  ( 3 x ) = 1  cos  6 x 2

where the right hand side can be integrated easily.

  
 
Question 10
/ 5 pts
If LaTeX: \frac{8x+5}{3x^{2}-5x-2}=\frac{A}{3x+1}+\frac{B}{x-2}8 x + 5 3 x 2  5 x  2 = A 3 x + 1 + B x  2, then
  
  
Well done
  
  
 
Question 11
/ 5 pts

Evaluate the definite integral LaTeX: \int^{\pi}_0\left(1+\tan x\:\cos x\right)dx 0 π ( 1 + tan  x cos  x ) d x

  
  
  
  
Well done
 
Question 12
/ 5 pts

Evaluate the definite integral LaTeX: \int_0^6\frac{1}{x^2+36}dx 0 6 1 x 2 + 36 d x.

 

  
  
  
  
Well done
 
Question 13
/ 5 pts

Evaluate the definite integral LaTeX: \int^1_0xe^{-2x}\:dx 0 1 x e  2 x d x

  
  
Well done
  
  
 
Question 14
/ 5 pts
Compute the definite integral LaTeX: \int^1_0\cos\pi x\:dx 0 1 cos  π x d x
  
  
  
Well done
  
 
Question 15
/ 5 pts
Compute the definite integral LaTeX: \int^1_0\left|\cos\pi x\right|dx 0 1 | cos  π x | d x.
  
  
Well done
  
  
 
Question 16
/ 5 pts

Evaluate the definite integral LaTeX: \int^{\frac{\pi}{3}}_0\tan^3x\:dx 0 π 3 tan 3  x d x.

 

  
  
Well done
  
  
 
Question 17
/ 5 pts

Evaluate the definite integral LaTeX: \int^1_0\arctan x\:dx 0 1 arctan  x d x.

  
Well done
  
  
  
 
Question 18
/ 5 pts

Let f be a continuous function on [-1, 1]. Define F on [-1, 1] by 

LaTeX: F\left(x\right)=\int_0^xf\left(t\right)dtF ( x ) =  0 x f ( t ) d t.

Compute F(0)

  
Well done
  
  
  
 
IncorrectQuestion 19
/ 5 pts

Let f be a continuous function on [-1, 1]. Define F on [-1, 1] by 

LaTeX: F\left(x\right)=\int_0^xf\left(t\right)dtF ( x ) =  0 x f ( t ) d t. If LaTeX: F'\left(x\right)=e^x+2x+1F  ( x ) = e x + 2 x + 1 for x in (-1, 1)

Evaluate f(0).

  
  
  
  
 
Question 20
/ 5 pts

Let f be a function on LaTeX: \left(-\infty,\:\infty\right)(   ,  ) such that LaTeX: \int f\left(x\right)dx=x^2e^{2x}+C f ( x ) d x = x 2 e 2 x + C. Compute f(x).

  
  
  
  
Well done
Quiz score: 95 out of 100

Comments

Popular posts from this blog